

N-N-bar Oscillation and Physics Beyond standard model

R. N. Mohapatra

2012 Project X Physics Study (PXPS12)

Fermilab, June, 2012

What is N-Nbar oscillation?

- Neutrons in vacuum and low magnetic field spontaneously converting to anti-neutron.
 - Free oscillation time

$$\tau_{n\bar{n}} = \frac{\mathscr{M}}{\delta m_{n\bar{n}}}$$

- Transition probability: $P_{n \to \overline{n}} \approx \left(\frac{t}{\tau_{n\overline{n}}}\right)^2$
- # of events: $N P_{n \to \overline{n}} x$ running time (N = neutron flux)
- Current direct search limit ILL $\tau > 8.6 \times 10^7 \text{ sec}$
- $\rightarrow \delta m_{n\bar{n}} < 10^{-32} GeV$
- $au_{nar{n}}$ can be probed up to $10^{10\text{-}11}$ sec. (Kamyshkov and Snow's talk)
- $\delta m_{n \bar{n}}$ is the particle physics probe !!

Given this limit on \overline{nn} why are nuclei stable?

• Oscillation inside nuclei are suppressed by the factor $\left(\frac{\delta m_{n\bar{n}}}{V_n-V_{\bar{n}}}\right)^2 \leq 10^{-62}$

More detailed calculation: (Dover, Gal, Richard; Vainstein's talk)

$$\tau_{Nuc} = R\tau_{n\bar{n}}^2 \ R = 0.3 \times 10^{23} \, \text{sec}^{-1} \to \tau_{Nuc} \ge 10^{32} yrs$$

• Super-K search (Kearns' talk) $T_{n\overline{n}} > 2.44 \times 10^8 \text{ sec.}$

Why is it important to search for NNbar?

- Many reasons to believe that baryon number (B) is not a good symmetry of nature :
 - Sphalerons in SM, GUTs, origin of matter etc.
- If B is violated, important to determine the selection rules: B=1 (p-decay) or B=2 (NNbar)?
 - i) What is the scale at which B- symmetry is broken?

 NNbar → lower scale physics than usual p-decay
 - ii) NNbar oscillation intimately connected to neutrino mass physics when combined with quark-lepton unification

(i) Operator analysis and scale reach of NNbar

SM particles
$$O_{\Delta B=2} = \frac{1}{M^5} u^c d^c d^c u^c d^c d^c d^c$$
 d=9

$$\delta m_{n-\bar{n}} = O_{\Delta B=2} \Lambda_{QCD}^{\phantom{$$

$$Om_{n-\overline{n}} = O_{\Delta B=2} \Lambda_{QCD}$$
 (Lattice talks)

$$au_{n-\overline{n}} = \hbar / \delta m_{n-\overline{n}} \sim M^{5} / \Lambda^{6} \rightarrow \tau_{n\overline{n}} \sim 10^{8} s. M \approx 10^{5.5} GeV$$

TeV diquarks:
$$\rightarrow \Delta_{u^c d^c} \rightarrow \frac{1}{M} d^c d^c \Delta_{u^c d^c} \Delta_{u^c d^c}$$

Probe M_{B-L} to 10¹⁵ GeV

$$M \ge 10^{15} \ GeV$$

(ii) Neutrino mass NNbar connection

- SM has exact global B-L symmetry !!
- If neutrino is Majorana fermion, it breaks L-part of B-L
- observation of $\beta\beta_{0\nu}$ decay will be a significant discovery which will confirm this but will not tell us much about associated new physics.
- N-N-bar oscillation breaks B-part of B-L and provide complementary information
 - e.g. if NN-bar is observed, either all or surely some of nu-mass physics is at the TeV scale and will be accessible in other expts e.g. LHC, FCNC, edm

Questions for N-N-bar oscillation

- Are there decent (predictive?) theories explaining small neutrino masses which give observable N-N-bar oscillation?
- Implications of observable N-N-bar for cosmology i.e. does it affect conventional explanations of origin of matter/can it explain itself?
- Two examples of models for NNbar:
 - (i) TeV scale Seesaw +Quark-Lepton unif.
 - (ii) SO(10) GUT scale seesaw+TeV sextets

Majorana neutrino mass via seesaw and NNbar

$$m_{v} \cong -\frac{h_{v}^{2} v_{wk}^{2}}{M_{R}}$$

Minkowsk'77i; Gell-Mann, Ramond, Slansky; Yanagida; Glashow, Mohapatra, Senjanovic'79

- $M_R << M_{Pl} \rightarrow B-L$ a gauge symmetry $\rightarrow N$ Majorana mass arises from a new Higgs vev $< \Delta_R >$ (like SM fermion masses from <H>):
- What is $\langle \Delta_R \rangle$, the actual <u>scale</u> of B-L breaking ?
- Do quarks and leptons unify to big picture of flavor?
- NNbar search can answer these questions !!

A UNIFIED TEV SCALE EMBEDDING OF SEESAW

If Q-L unified at the seesaw, a model is

$$SU(2)_L \times SU(2)_R \times SU(4)_c \begin{pmatrix} u & u & u & \nu \\ d & d & d & e \end{pmatrix}_{L,R}$$

- \rightarrow SU(4) generalization of the seesaw Higgs field Δ_R has partners Δ_{qq} connecting to qua
- →N-N-bar Feynman graph;

(Mohapatra, Marshak'80)

→No proton decay.

■ Colored seesaw partners at TeV scale $\rightarrow \tau \sim 10^{10-11} \, \mathrm{sec}$.

Low scale NNbar model and origin of matter

- ullet Only constraint on model is from nu masses. Without additional assumption, this model cannot predict $\mathcal{T}_{n\bar{n}}$
- Assumption of low scale baryogenesis puts constraints on the SU(2)_LxSU(2)_RxSU(4)_c model parameters and makes a prediction: (Babu's talk 6/16)
- For a B-L scale < 50 TeV, the constraints put an upper bound NNbar transition time < 10¹¹ sec.
- No NNbar till 10¹¹ s., will rule out this model for post sphaleron baryogenesis if v_{BL} < 50 TeV (Babu,Dev,RNM'PRD'09)

Seesaw in SO(10) —Another predictive model for NNbar

- Coupling unification fixes the mass scales as in the case of proton decay:
- In a minimal SO(10) embedding of seesaw, f_{ab} determined from fermion mass fits
- (Babu, Mohapatra'93; Fukuyama, Okada'02; Bajc, Senjanovic, Vissani'02; Goh, Mohapatra, Ng'03 Babu, Macesanu'05; Bertolini, Malinsky, Schwetz'06; Joshipura, Patel'11)
- Predicts correct θ_{23}, θ_{12} and $\sin^2 2\theta_{13} \simeq 0.09$

Model has diquarks at sub-TeV scale to have unification and they lead to observable NNbar!

New Unification profile

- Non-SUSY SO(10) does not unify without low scale particles,
- Coupling unif with sub-TeV $\Delta_{ud}(6,1,\frac{1}{3})$
- + 2 SM triplets+2 Higgs;
- Predicts seesaw scale near $M_{II} \sim 10^{16} \,\text{GeV}$;
- lacksquare Δ_{ud} mass ~2 TeV

 $\text{M}_{\text{U}} \sim 10^{15.7} \text{ GeV} \rightarrow \\ \tau_{p \rightarrow e^+ + \pi^0} \simeq 3.2 \times 10^{34} yrs \text{ close to current limit.}$

(Babu, Mohapatra, arXiv:1206.xxxx)

Estimate of N-N-bar oscillation time

Diagram:

$$G_{\Delta B=2} \simeq \frac{\lambda f_{11}^3 \eta^3}{\lambda' M_U M_{\Delta_{ud}}^4} \simeq \frac{\lambda}{\lambda'} 10^{-33} GeV^{-5}$$

- Predicts T_{n} \bar{n} $\sim 10^{10}$ - 10^{13} sec.
- Constraints of adequate baryogenesis enhances this to $\mathcal{T}_{n} = \bar{n} \sim 10^8 10^{11} \, \mathrm{sec.}$

New Particles at LHC: Color sextet scalars Δ_{qq}

- TeVColor sextets are an inherent part of both models; Can be searched at LHC:

(I) Single production:
$$ud \rightarrow \Delta_{ud} \rightarrow tj$$

xsection calculated in (RNM, Okada, Yu' 07;) resonance peaks above SM background- decay to tj;

• Important LHC signature: $\sigma(tt) > \sigma(tt)$

$$\sigma(tt) > \sigma(t\bar{t})$$

(II) Drell-Yan pair production $q\bar{q} \rightarrow G \rightarrow \Delta_{ud}\Delta_{ud}$

$$q\overline{q} \to G \to \Delta_{ud}\overline{\Delta}_{ud}$$

Leads to tjtj final states: LHC reach < TeV</p>

Origin of matter and neutron oscillation

- Current scenarios:
- (i) Leptogenesis; Related to seesaw; but hard to test!
- (ii) Electroweak baryogenesis:
 - M_{higgs} <127 GeV; $m_{\tilde{t}} \leq 120 GeV$ (puts MSSM under tension)
- New scenarios: (Babu's talk)
- (iii) Post sphaleron Baryogenesis both connected (iv) GUT baryogenesis
 - to NNbar osc.
- Non-observation of NNbar upto 10¹¹ sec.will rule out simple models for PSB as well as the particular SO(10) model.

Benchmark goal for ruling out new physics scenarios

No NNbar oscillation till 10^{11} sec. \rightarrow

Will rule out a class of SU(2)xSU(2)xSU(4)_C models for post sphaleron baryogenesis (perhaps even a larger class class of models) !!

Will rule out a sub-class of non-susy SO(10) models for neutrino masses that predicted recently observed large θ_{13} if it is to explain the origin of matter.

Implications of NNbar observation for low energy

■ FCNC effects in the B and D-sector: could reconcile anomalies e.g. $\epsilon_K \ vs \ \sin 2\beta$, B-decays etc.

■ EDM of neutron from PSB→ non-zero at two loop

■ Strange dibaryon decay: NN→ KK+X (Glashow) Mediated only by $\underline{\Lambda}_{ud\ dd}$: Related to $\Lambda=\overline{\Lambda}$ transition

$$au_{Nuc} = R au^2$$
 free formula implies: $au_{KK} \sim 10^{34} - 10^{35} yrs$

Current Super -K upper limit: $>1.7x10^{32}$ yrs.

Other theories for NN-bar

TeV scale extra Dim models:

Dvali, Gabadadze; J. N. Ng, Winslow; Nussinov, Shrock

Gluino graphs in GUTs:

Zwirner (RPV), RNM, Valle (E₆); Babu, RNM; Goity, Sher;.

.u .d

What else can we learn from direct NNbar search?

- Can test some dark matter hypothesis e.g. if a dark neutron n is dark matter (ADM models):
- n oscillation can deplete dark matter density and this can be searched for in direct nn-bar searches; current limit > 1 s (Bento, Berezhiani) (possibly a signal?)
- If NNbar is discovered, it will put the strongest limit on CPT violation- (Okun; Addazzi, BLV2011)

NN-bar oscillation- gold mine of new physics info— 10¹¹ sec. benchmark goal

Complementary info on Neutrino mass physics

Possible New understanding Of Origin of matter

Extra space dim

No SUSY GUT

New particles At LHC N-N-bar osc. search and discovery

Strange Nucl. decay modes

Improvement of neutron Technology

Most stringent
CPT Test, testing
DM models

Predictions vs Discoveries: A historical perspective

Process Predicted? Implications of non-discovery CP Violation No nothing No a lot m_c, m_b, m_t W, Z Yes a lot

P decay $p \rightarrow e^+ + \pi^0$ GUT idea yes $au \ge 10^{35}$ in trouble $p \to K^+ \bar{\nu}$ Nothing

Thank you for your attention!

Search for N-N-bar Osc. current status

Pree neutron oscillation in reactors: generic

Current bound (ILL'94)

with L ~ 90 m and
$$\langle t \rangle = 0.11$$
 sec
measured $P_{n\bar{n}} < 1.6 \times 10^{-18}$
 $\tau > 8.6 \times 10^{7}$ sec

No new search after that

Estimate of N-N-bar with susy

New Feynman diagram for N-N-bar osc.

$$\begin{array}{l} \text{Filt} \quad G_{N-\bar{N}} \simeq \frac{f \Omega}{\lambda^2 M_{recons}^2 v_{wk}^2} \\ M_{seesaw} \sim 10^{11} \,\, \text{GeV}, \,\, \text{typical} \,\, f, \lambda, \,\, \tau_{N-\bar{N}} \sim 10^{10} \,\, \text{sec}. \end{array}$$

Observable N-N-bar osc for M_seesaw~10^11 GeV.

(Dutta, Mimura, RNM; PRL (2006)

Expectation for neutronanti-neutron oscillation

- B-L violation at GUT scale leads to couplings $v_{BL}\Delta_{ud}\Delta_{ud}\Delta_{ud}\Delta_{dd}$

■ →
$$G_{\text{nn-bar}} = \frac{v_{BL}f^3}{M_{\Delta_{ud}}^4 M_{\Delta_{dd}}^2} = 10^{-29} \text{ GeV}^{-5}$$
 →
$$\tau_{n\bar{n}} \sim \frac{G_{n\bar{n}}}{\Lambda_{QCD}^6} \sim 10^{10} sec.$$

Observable with available reactor fluxes

From Seesaw to NNbar: a group theoretic argument

- Seesaw $\rightarrow \Delta L = 2$
- Scale not M_{Pl} suggests new gauge sym (B-L)

•
$$\rightarrow$$
 $Q = I_{3L} + I_{3R} + \frac{B - L}{2}$

$$\Delta Q = 0; \Delta I_{3L} = 0 \rightarrow \Delta I_{3R} = -\Delta \frac{B - L}{2}$$

$$\Delta I_{3R} = -\Delta \frac{B - L}{2}$$

 \blacksquare For hadrons only, $\rightarrow \Delta B = 2$ N-N-bar oscillation

Origin of matter and NNbar: TeV QL unif model

- Observation of NNbar will completely alter our thinking about the origin of matter.
- TeV QL model: NNbar transition in equilibrium 100 GeV
 - will erase any pre-existing matter asym!!
- New way to create matter below electroweak scale:
 Six quark NNbar operator
 - coupled to a scalar fie

(Post-sphaleron

Baryogenesis)

(Babu, RNM, Nasri' 07)

Low scale NNbar model and origin of matter

- Constraints on PSB in the SU(2)_LxSU(2)_RxSU(4)_c model
- i) $M_{\Delta_{qq}} > M_S$
- ii) $1 \ GeV < T_{S-decay} < 100 GeV$
- iii) $\Gamma_{S \to 6q} > \Gamma_{S \to Zq\bar{q}}$
- iv) A neutrino mass fit+FCNC constraints
- For a v_{B-L} < 50 TeV, these constraints upper bound NNbar transition time < 10^{10} sec.
- No NNbar till 10¹⁰ s., will rule out this model for post sphaleron baryogenesis and NNbar oscillation if v_{BL} < 50 TeV (Babu,Dev,RNM′PRD′09; also B. D. M. Snow to appear.)

Origin of matter in SO(10) theory with NNbar

- Two sources of matter asymmetry:
 - (a) Leptogenesis
 - (b) B-L violating GUT scale by $\Delta_{dd}(\omega)$ decay

• Must occur above $T_{sph}{\sim}10^{13}\text{-}10^{12}$ GeV, below sphalerons are in eq. - $\Delta\,L$ must be out of eq. by T_{sph}

NNbar from di-nucleon decay

Nucleon decay expts search for NNbar by looking for NN $\to \pi's$ in a nucleus (Dover, Gal, Richards; Gal; Vainstein's talk)

$$au_{Nuc} = R au^2$$
 free

$$R = 0.3 \times 10^{23} \,\mathrm{sec}^{-1}$$

(Plot by Y. Kamyshkov)

$$T_{n\overline{n}} > 2.44 \text{x} 10^8 \text{ sec.}$$
 (S-K,Abe et al.)

Free oscillation search much more effective !!

Unique way to test GUT scale seesaw

A natural scale for seesaw is GUT scale and is certainly required if forces and matter unify!!

 Without susy, no way to test such theories except for NNbar oscillation or B-L violating nucleon decays.